6. OOP I: Objects and Methods#
6.1. Overview#
The traditional programming paradigm (think Fortran, C, MATLAB, etc.) is called procedural.
It works as follows
The program has a state corresponding to the values of its variables.
Functions are called to act on and transform the state.
Final outputs are produced via a sequence of function calls.
Two other important paradigms are object-oriented programming (OOP) and functional programming.
In the OOP paradigm, data and functions are bundled together into “objects” — and functions in this context are referred to as methods.
Methods are called on to transform the data contained in the object.
Think of a Python list that contains data and has methods such as
append()
andpop()
that transform the data.
Functional programming languages are built on the idea of composing functions.
So which of these categories does Python fit into?
Actually Python is a pragmatic language that blends object-oriented, functional and procedural styles, rather than taking a purist approach.
On one hand, this allows Python and its users to cherry pick nice aspects of different paradigms.
On the other hand, the lack of purity might at times lead to some confusion.
Fortunately this confusion is minimized if you understand that, at a foundational level, Python is object-oriented.
By this we mean that, in Python, everything is an object.
In this lecture, we explain what that statement means and why it matters.
We’ll make use of the following third party library
!pip install rich
Requirement already satisfied: rich in /home/runner/miniconda3/envs/quantecon/lib/python3.12/site-packages (13.7.1)
Requirement already satisfied: markdown-it-py>=2.2.0 in /home/runner/miniconda3/envs/quantecon/lib/python3.12/site-packages (from rich) (2.2.0)
Requirement already satisfied: pygments<3.0.0,>=2.13.0 in /home/runner/miniconda3/envs/quantecon/lib/python3.12/site-packages (from rich) (2.15.1)
Requirement already satisfied: mdurl~=0.1 in /home/runner/miniconda3/envs/quantecon/lib/python3.12/site-packages (from markdown-it-py>=2.2.0->rich) (0.1.0)
6.2. Objects#
In Python, an object is a collection of data and instructions held in computer memory that consists of
a type
a unique identity
data (i.e., content)
methods
These concepts are defined and discussed sequentially below.
6.2.1. Type#
Python provides for different types of objects, to accommodate different categories of data.
For example
s = 'This is a string'
type(s)
str
x = 42 # Now let's create an integer
type(x)
int
The type of an object matters for many expressions.
For example, the addition operator between two strings means concatenation
'300' + 'cc'
'300cc'
On the other hand, between two numbers it means ordinary addition
300 + 400
700
Consider the following expression
'300' + 400
---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
Cell In[6], line 1
----> 1 '300' + 400
TypeError: can only concatenate str (not "int") to str
Here we are mixing types, and it’s unclear to Python whether the user wants to
convert
'300'
to an integer and then add it to400
, orconvert
400
to string and then concatenate it with'300'
Some languages might try to guess but Python is strongly typed
Type is important, and implicit type conversion is rare.
Python will respond instead by raising a
TypeError
.
To avoid the error, you need to clarify by changing the relevant type.
For example,
int('300') + 400 # To add as numbers, change the string to an integer
700
6.2.2. Identity#
In Python, each object has a unique identifier, which helps Python (and us) keep track of the object.
The identity of an object can be obtained via the id()
function
y = 2.5
z = 2.5
id(y)
140212571074288
id(z)
140212571074032
In this example, y
and z
happen to have the same value (i.e., 2.5
), but they are not the same object.
The identity of an object is in fact just the address of the object in memory.
6.2.3. Object Content: Data and Attributes#
If we set x = 42
then we create an object of type int
that contains
the data 42
.
In fact, it contains more, as the following example shows
x = 42
x
42
x.imag
0
x.__class__
int
When Python creates this integer object, it stores with it various auxiliary information, such as the imaginary part, and the type.
Any name following a dot is called an attribute of the object to the left of the dot.
e.g.,
imag
and__class__
are attributes ofx
.
We see from this example that objects have attributes that contain auxiliary information.
They also have attributes that act like functions, called methods.
These attributes are important, so let’s discuss them in-depth.
6.2.4. Methods#
Methods are functions that are bundled with objects.
Formally, methods are attributes of objects that are callable – i.e., attributes that can be called as functions
x = ['foo', 'bar']
callable(x.append)
True
callable(x.__doc__)
False
Methods typically act on the data contained in the object they belong to, or combine that data with other data
x = ['a', 'b']
x.append('c')
s = 'This is a string'
s.upper()
'THIS IS A STRING'
s.lower()
'this is a string'
s.replace('This', 'That')
'That is a string'
A great deal of Python functionality is organized around method calls.
For example, consider the following piece of code
x = ['a', 'b']
x[0] = 'aa' # Item assignment using square bracket notation
x
['aa', 'b']
It doesn’t look like there are any methods used here, but in fact the square bracket assignment notation is just a convenient interface to a method call.
What actually happens is that Python calls the __setitem__
method, as follows
x = ['a', 'b']
x.__setitem__(0, 'aa') # Equivalent to x[0] = 'aa'
x
['aa', 'b']
(If you wanted to you could modify the __setitem__
method, so that square bracket assignment does something totally different)
6.3. Inspection Using Rich#
There’s a nice package called rich that helps us view the contents of an object.
For example,
from rich import inspect
x = 10
inspect(10)
╭────── <class 'int'> ───────╮ │ int([x]) -> integer │ │ int(x, base=10) -> integer │ │ │ │ ╭────────────────────────╮ │ │ │ 10 │ │ │ ╰────────────────────────╯ │ │ │ │ denominator = 1 │ │ imag = 0 │ │ numerator = 10 │ │ real = 10 │ ╰────────────────────────────╯
If we want to see the methods as well, we can use
inspect(10, methods=True)
╭───────────────────────────────────────────────── <class 'int'> ─────────────────────────────────────────────────╮ │ int([x]) -> integer │ │ int(x, base=10) -> integer │ │ │ │ ╭─────────────────────────────────────────────────────────────────────────────────────────────────────────────╮ │ │ │ 10 │ │ │ ╰─────────────────────────────────────────────────────────────────────────────────────────────────────────────╯ │ │ │ │ denominator = 1 │ │ imag = 0 │ │ numerator = 10 │ │ real = 10 │ │ as_integer_ratio = def as_integer_ratio(): Return a pair of integers, whose ratio is equal to the original int. │ │ bit_count = def bit_count(): Number of ones in the binary representation of the absolute value of self. │ │ bit_length = def bit_length(): Number of bits necessary to represent self in binary. │ │ conjugate = def conjugate(...) Returns self, the complex conjugate of any int. │ │ from_bytes = def from_bytes(bytes, byteorder='big', *, signed=False): Return the integer represented by │ │ the given array of bytes. │ │ is_integer = def is_integer(): Returns True. Exists for duck type compatibility with float.is_integer. │ │ to_bytes = def to_bytes(length=1, byteorder='big', *, signed=False): Return an array of bytes │ │ representing an integer. │ ╰─────────────────────────────────────────────────────────────────────────────────────────────────────────────────╯
In fact there are still more methods, as you can see if you execute inspect(10, all=True)
.
6.4. A Little Mystery#
In this lecture we claimed that Python is, at heart, an object oriented language.
But here’s an example that looks more procedural.
x = ['a', 'b']
m = len(x)
m
2
If Python is object oriented, why don’t we use x.len()
?
The answer is related to the fact that Python aims for readability and consistent style.
In Python, it is common for users to build custom objects — we discuss how to do this later.
It’s quite common for users to add methods to their that measure the length of the object, suitably defined.
When naming such a method, natural choices are len()
and length()
.
If some users choose len()
and others choose length()
, then the style will
be inconsistent and harder to remember.
To avoid this, the creator of Python chose to add
len()
as a built-in function, to help emphasize that len()
is the convention.
Now, having said all of this, Python is still object oriented under the hood.
In fact, the list x
discussed above has a method called __len__()
.
All that the function len()
does is call this method.
In other words, the following code is equivalent:
x = ['a', 'b']
len(x)
2
and
x = ['a', 'b']
x.__len__()
2
6.5. Summary#
The message in this lecture is clear:
In Python, everything in memory is treated as an object.
This includes not just lists, strings, etc., but also less obvious things, such as
functions (once they have been read into memory)
modules (ditto)
files opened for reading or writing
integers, etc.
Remember that everything is an object will help you interact with your programs and write clear Pythonic code.
6.6. Exercises#
We have met the boolean data type previously.
Using what we have learnt in this lecture, print a list of methods of the
boolean object True
.
Hint
You can use callable()
to test whether an attribute of an object can be called as a function
Solution to Exercise 6.1
Firstly, we need to find all attributes of True
, which can be done via
print(sorted(True.__dir__()))
['__abs__', '__add__', '__and__', '__bool__', '__ceil__', '__class__', '__delattr__', '__dir__', '__divmod__', '__doc__', '__eq__', '__float__', '__floor__', '__floordiv__', '__format__', '__ge__', '__getattribute__', '__getnewargs__', '__getstate__', '__gt__', '__hash__', '__index__', '__init__', '__init_subclass__', '__int__', '__invert__', '__le__', '__lshift__', '__lt__', '__mod__', '__mul__', '__ne__', '__neg__', '__new__', '__or__', '__pos__', '__pow__', '__radd__', '__rand__', '__rdivmod__', '__reduce__', '__reduce_ex__', '__repr__', '__rfloordiv__', '__rlshift__', '__rmod__', '__rmul__', '__ror__', '__round__', '__rpow__', '__rrshift__', '__rshift__', '__rsub__', '__rtruediv__', '__rxor__', '__setattr__', '__sizeof__', '__str__', '__sub__', '__subclasshook__', '__truediv__', '__trunc__', '__xor__', 'as_integer_ratio', 'bit_count', 'bit_length', 'conjugate', 'denominator', 'from_bytes', 'imag', 'is_integer', 'numerator', 'real', 'to_bytes']
or
print(sorted(dir(True)))
['__abs__', '__add__', '__and__', '__bool__', '__ceil__', '__class__', '__delattr__', '__dir__', '__divmod__', '__doc__', '__eq__', '__float__', '__floor__', '__floordiv__', '__format__', '__ge__', '__getattribute__', '__getnewargs__', '__getstate__', '__gt__', '__hash__', '__index__', '__init__', '__init_subclass__', '__int__', '__invert__', '__le__', '__lshift__', '__lt__', '__mod__', '__mul__', '__ne__', '__neg__', '__new__', '__or__', '__pos__', '__pow__', '__radd__', '__rand__', '__rdivmod__', '__reduce__', '__reduce_ex__', '__repr__', '__rfloordiv__', '__rlshift__', '__rmod__', '__rmul__', '__ror__', '__round__', '__rpow__', '__rrshift__', '__rshift__', '__rsub__', '__rtruediv__', '__rxor__', '__setattr__', '__sizeof__', '__str__', '__sub__', '__subclasshook__', '__truediv__', '__trunc__', '__xor__', 'as_integer_ratio', 'bit_count', 'bit_length', 'conjugate', 'denominator', 'from_bytes', 'imag', 'is_integer', 'numerator', 'real', 'to_bytes']
Since the boolean data type is a primitive type, you can also find it in the built-in namespace
print(dir(__builtins__.bool))
['__abs__', '__add__', '__and__', '__bool__', '__ceil__', '__class__', '__delattr__', '__dir__', '__divmod__', '__doc__', '__eq__', '__float__', '__floor__', '__floordiv__', '__format__', '__ge__', '__getattribute__', '__getnewargs__', '__getstate__', '__gt__', '__hash__', '__index__', '__init__', '__init_subclass__', '__int__', '__invert__', '__le__', '__lshift__', '__lt__', '__mod__', '__mul__', '__ne__', '__neg__', '__new__', '__or__', '__pos__', '__pow__', '__radd__', '__rand__', '__rdivmod__', '__reduce__', '__reduce_ex__', '__repr__', '__rfloordiv__', '__rlshift__', '__rmod__', '__rmul__', '__ror__', '__round__', '__rpow__', '__rrshift__', '__rshift__', '__rsub__', '__rtruediv__', '__rxor__', '__setattr__', '__sizeof__', '__str__', '__sub__', '__subclasshook__', '__truediv__', '__trunc__', '__xor__', 'as_integer_ratio', 'bit_count', 'bit_length', 'conjugate', 'denominator', 'from_bytes', 'imag', 'is_integer', 'numerator', 'real', 'to_bytes']
Here we use a for
loop to filter out attributes that are callable
attributes = dir(__builtins__.bool)
callablels = []
for attribute in attributes:
# Use eval() to evaluate a string as an expression
if callable(eval(f'True.{attribute}')):
callablels.append(attribute)
print(callablels)
['__abs__', '__add__', '__and__', '__bool__', '__ceil__', '__class__', '__delattr__', '__dir__', '__divmod__', '__eq__', '__float__', '__floor__', '__floordiv__', '__format__', '__ge__', '__getattribute__', '__getnewargs__', '__getstate__', '__gt__', '__hash__', '__index__', '__init__', '__init_subclass__', '__int__', '__invert__', '__le__', '__lshift__', '__lt__', '__mod__', '__mul__', '__ne__', '__neg__', '__new__', '__or__', '__pos__', '__pow__', '__radd__', '__rand__', '__rdivmod__', '__reduce__', '__reduce_ex__', '__repr__', '__rfloordiv__', '__rlshift__', '__rmod__', '__rmul__', '__ror__', '__round__', '__rpow__', '__rrshift__', '__rshift__', '__rsub__', '__rtruediv__', '__rxor__', '__setattr__', '__sizeof__', '__str__', '__sub__', '__subclasshook__', '__truediv__', '__trunc__', '__xor__', 'as_integer_ratio', 'bit_count', 'bit_length', 'conjugate', 'from_bytes', 'is_integer', 'to_bytes']